
T H E S C I N E R E A D U C T D E V E L O P E R S :

C H R I S T O P H B R U N K E N , J A N U N S L E B E R , A L A I N

VA U C H E R , A N D M A R K U S R E I H E R

U S E R M A N U A L

S C I N E R E A D U C T 1 . 0 . 0

E T H Z Ü R I C H

Copyright © 2019 The SCINE ReaDuct Developers:

Christoph Brunken, Jan Unsleber, Alain Vaucher, and Markus Reiher

https://scine.ethz.ch/download/readuct

Unless required by applicable law or agreed to in writing, the software is distributed on an “as is” basis,
without warranties or conditions of any kind, either express or implied.

Contents

Introduction 5

Obtaining the Software 6

Installation 7

Using the Standalone Binary 8

Using the Python Library 19

Extensions Planned in Future Releases 21

Important References 22

Introduction

The SCINE project requires stable algorithms for the refinement of
elementary-reaction paths and associated transition-state structures.
The SCINE ReaDuct module was designed to serve this purpose
and can be driven from SCINE Interactive and SCINE Chemo-
ton. However, as with all SCINE modules it is a stand-alone pro-
gram that can drive standard quantum chemical software.

SCINE ReaDuct is a command-line tool that allows to carry out
structure optimizations, transition state searches and intrinsic re-
action coordinate (IRC) calculations among other things. For these
calculations, it relies on a backend program to provide the necessary
quantum chemical properties (such as nuclear gradients). Currently,
SCINE Sparrow

1 and Orca
2 are supported as backend programs. 1 Husch, T.; Vaucher, A. C.; Reiher, M.

Semiempirical molecular orbital models
based on the neglect of diatomic dif-
ferential overlap approximation, Int. J.
Quantum Chem. 2018, 118, e25799

2 Neese, F. The ORCA program system,
Wiley Interdiscip. Rev. Comput. Mol. Sci.
2012, 2, 73–78

In this manual, we describe the installation of the software, an exam-
ple calculation as a hands-on introduction to the program, and the
most import functions and options.3 A prospect on features in future

3 Throughout this manual, the most
import information is displayed in the
main text, whereas useful additional
information is given as a side note like
this one.

releases and references for further reading are added at the end of
this manual.

Obtaining the Software

ReaDuct is distributed as open source software in the frame-
work of the SCINE project (www.scine.ethz.ch). Visit our website
(www.scine.ethz.ch/download/readuct) to obtain the software.

System Requirements

ReaDuct can be used on any computer with a 64-bit x86 architec-
ture. The software itself has only modest requirements regarding the
hardware performance. However, the underlying quantum-chemical
calculations might become resource intensive if extremely large sys-
tems are studied. We advise to first explore the software with the
fast semiempirical methods provided in ReaDuct. This allows one
to quickly understand what to expect from the software rather than
being confused by possibly long times waiting for more invovled
quantum chemical calculations to finish.

https://scine.ethz.ch/
https://scine.ethz.ch/download/readuct

Installation

ReaDuct is distributed as an open source code. In order to compile
ReaDuct from this source code, you need

• a C++ compiler supporting the C++14 standard (we recommend
gcc 7.3.0),

• cmake (we recommend version 3.9.0),

• the Boost library (we recommend version 1.64.0), and

• the Eigen3 library (we recommend version 3.3.2).

In order to compile the software, either directly clone the repository
with git or extract the downloaded tarball, change to the source di-
rectory and execute the following steps:

git submodule init

git submodule update

mkdir build install

cd build

cmake -DCMAKE_BUILD_TYPE=Release -DBUILD_SPARROW=ON -DCMAKE_INSTALL_PREFIX=../install ..

make

make test

make install

export SCINE_MODULE_PATH=<source code directory>/install/lib

export PATH=$PATH:<source code directory>/install/bin

This will configure everything, compile your software, run the tests,
and install the software into the folder “install”. Finally, it will add
the ReaDuct binary to your PATH such that you can use it without
having to specify its full location. In this last command, you have
to replace <source code directory> with the full path where you
stored the source code of ReaDuct.

In case you need support with the setup of ReaDuct, please contact
us by writing to scine@phys.chem.ethz.ch.

scine@phys.chem.ethz.ch

Using the Standalone Binary

ReaDuct is a command-line-only binary; there is no graphical user
interface. Therefore, you always work with the ReaDuct binary on a
command line such as the Gnome Terminal or KDE Konsole.

All functionality is accessed via an input file following the YAML
syntax.

General Structure of the Input File

The general structure of a ReaDuct input file is as follows:

systems:

- name: [system name]

path: [path to coordinates file]

program: [program name]

method: [method name]

settings:

[settings key]: [settings value]

...

tasks:

- type: [task type name]

input: [input system name]

output: [output system name]

settings:

[settings key]: [settings value]

...

There are two major blocks, namely a systems block and a tasks

block. You can define multiple systems in the systems block and
multiple tasks in the tasks block (see also section Task Chaining).

A system is a combination of nuclear coordinates (given as an XYZ

using the standalone binary 9

file) and a calculation program (such as SCINE Sparrow or ORCA)
and method (such as PM6). Depending on the program and method
used, different settings (such as molecular charge, spin multiplicity,
and convergence thresholds) can be given. A task specifies that a
certain calculation type (such as a structure optimization) should
be carried out with a given (input) system. Different tasks can have
different settings. For every task, an output system can be assigned to
be used in further tasks (for instance, the output system of a structure
optimization task contains the optimized nuclear coordinates).

For example, in order to do a simple structure optimization, you can
use the following input file:

systems:

- name: ’water’

path: ’h2o.xyz’

program: ’Sparrow’

method: ’PM6’

settings:

molecular_charge: 0

spin_multiplicity: 1

tasks:

- type: ’geoopt’

input: [’water’]

output: [’water_opt’]

settings:

optimizer: ’lbfgs’

This specifies a system named water, the nuclear coordinates are
given by the XYZ file h2o.xyz. Any calculation performed on this
system will use the PM6 method provided by SCINE Sparrow. For
this system, a structure optimization will be carried out; the structure
will be optimized with the L-BFGS algorithm4. 4 Nocedal, J. Updating Quasi-Newton

Matrices With Limited Storage, Math.
Comp. 1980, 35, 773–782

Supported Programs and Methods

SCINE Sparrow

SCINE Sparrow is fully supported by SCINE ReaDuct. If built
with the cmake option -DBUILD_SPARROW=ON as described in sec-
tion Installation, it will be automatically downloaded and integrated
into ReaDuct at compile time.

In order to use SCINE Sparrow with ReaDuct, specify program:

10 scine readuct manual

’Sparrow’ in the respective system block and the desired calculation
method (such as ’PM6’) in the method key. All options supported by
Sparrow can be defined in the settings block. See the Sparrow

manual for a complete list of these options (the option names are
identical to the command line option names of the Sparrow stan-
dalone binary).

ORCA

Important note: Support for ORCA5 is currently not fully tested. 5 Neese, F. The ORCA program system,
Wiley Interdiscip. Rev. Comput. Mol. Sci.
2012, 2, 73–78

There might be specific calculation types and/or settings which do
not work. Also, we cannot guarantee compatibility with any ORCA
version different from 4.1.0 since we have no control over the output
format of an external program. If you encounter any problems when
using ORCA together with ReaDuct, please write a short message
to scine@phys.chem.ethz.ch.

In order to use ORCA with ReaDuct, specify program: ’OSUtils’

and method: ’ORCA’ in the respective system block. You can specify
the following settings in the settings block:

• molecular_charge: This specifies the molecular charge. It can take
on values between -10 and 10; by default, it is zero.

• spin_multiplicity: This specifies the spin multiplicity. It can take
on values between 1 and 10; by default, it is 1.

• orca_method: This specifies the method string. By default, it is
PBE def2-SVP, i.e., a DFT calculation with the PBE exchange–
correlation functional and the def2-SVP basis set is carried out.
You can specify any valid ORCA method string (see the ORCA
manual for a complete list).

• self_consistence_criterion: The threshold to which the elec-
tronic energy should be converged (given in hartree). By default, it
is 10

−6 hartree.

• orca_nprocs: The number of processors to use in the ORCA calcu-
lations. By default, it is one, i.e., a serial calculation is carried out.
Note that you have to specify the full ORCA binary path in case
you want to do a parallel calculation (see below).

• orca_binary_path: This is used to specify the path to the ORCA
binary. By default, this is set to “orca”, i.e., this option need not
be specified if ORCA is in your path and you want to do a serial
calculation (orca_nprocs: 1). For a parallel calculation, you have
to specify the full (absolute) path to your ORCA binary here.

scine@phys.chem.ethz.ch

using the standalone binary 11

• orca_filename_base: This specifies the basic filename (prefix)
used for all files related to the ORCA calculations. By default, it is
set to “orca_calc”; therefore, the generated input file will be named
“orca_calc.inp”.

• base_working_directory: This specifies the directory in which
the files for the ORCA calculations will be stored. By default,
this is set to the current directory. For each ORCA calculation a
new directory will be created inside the directory specified by
base_working_directory to keep the files related to that specific
calculation.

Tasks

Single Point Calculation

The single point task can be used to obtain the electronic energy of
a given system. In order to carry out this task, specify any of the
following in the respective task block: type: ’single_point’, type:
’singlepoint’, type: ’sp’, or type: ’energy’.

Hessian Calculation

This task calculates the Hessian of a given system and outputs the
vibrational frequencies. In order to carry out this task, specify any
of the following in the respective task block: type: ’hessian’,
type: ’frequency_analysis’, type: ’frequencyanalysis’, type:
’frequencies’, type: ’frequency’, or type: ’freq’.

Structure Optimization

This task is used in order to optimize the structure of a given system
to a minimum on the potential energy surface. In order to carry out
this task, specify any of the following in the respective task block:
type: ’geometry_optimization’, type: ’geometryoptimization’,
type: ’geoopt’, or type: ’opt’.

The task works without the specification of any additional settings;
the default settings work usually fine. However, if desired, the fol-
lowing settings can always be set:

• optimizer: This sets the desired optimization algorithm. You can
set ’lbfgs’ for the L-BFGS algorithm, ’steepestdescent’ or ’sd’

12 scine readuct manual

for a steepest descent algorithm, and ’newtonraphson’ or ’nr’ for
a Newton–Raphson algorithm. By default, it is set to ’lbfgs’.

• convergence_step_max_coefficient: The convergence thresh-
old for the maximum absolute element of the last step taken. By
default set to 1.0e-4.

• convergence_step_rms: The convergence threshold for the root
mean square of the last step taken. By default set to 5.0e-4.

• convergence_gradient_max_coefficient: The convergence thresh-
old for the maximum absolute element of the gradient. By default
set to 5.0e-5.

• convergence_gradient_rms: The convergence threshold for the
root mean square of the gradient. By default set to 1.0e-5.

• convergence_delta_value: The convergence threshold for the
change in the functional value. By default set to 1.0e-7.

• convergence_max_iterations: The maximum number of itera-
tions. By default set to 100.

• convergence_requirement: The number of criteria that have to
converge besides the value criterion. This has to be between 0 and
4; by default it is set to 3.

If you specified optimizer: ’lbfgs’, you can also set the following
options:

• lbfgs_maxm: The number of parameters and gradients from previ-
ous iterations to keep. By default set to 50.

• lbfgs_linesearch: Whether to use a line search or not. By default
set to true.

• lbfgs_c1: The first parameter of the Wolfe conditions. This option
is only relevant if line search is used (see above). By default set to
0.0001.

• lbfgs_c2: The second parameter of the Wolfe conditions. This
option is only relevant if line search is used (see above). By default
set to 0.9.

• lbfgs_step_length: The initial step length. By default set to 1.0.

• lbfgs_use_trust_radius: Whether to use the trust radius. By
default set to false.

• lbfgs_trust_radius: The maximum size of a taken step. By de-
fault set to 0.1.

using the standalone binary 13

If you specified optimizer: ’steepestdescent’ or optimizer:
’sd’, you can also set the following options:

• sd_factor: The scaling factor to be used in the steepest descent
algorithm. By default set to 0.1.

If you specified optimizer: ’newtonraphson’ or optimizer: ’nr’,
you can also set the following options:

• nr_trust_radius: The trust radius (maximum root mean square)
of a taken step. By default set to 0.5.

• nr_svd_threshold: The threshold for the singular value decompo-
sition of the Hessian. By default set to 1.0e-12.

Transition State Optimization

This task is used to optimize the structure of a given system to a tran-
sition state on the potential energy surface. In order to carry out this
task, specify any of the following in the respective task block: type:
’transition_state_optimization’, type: ’transitionstate_optimization’,
type: ’tsopt’, or type: ’ts’.

The task works without the specification of any additional settings;
the default settings work usually fine. However, if desired, the fol-
lowing settings can always be set:

• optimizer: This sets the desired optimization algorithm. You can
set ’bofill’ for Bofill’s algorithm6, or any of ’eigenvector_following’,6 Bofill, J. M. Updated Hessian Matrix

and the Restricted Step Method for Lo-
cating Transition Structures, J. Comput.
Chem. 1994, 15, 1-11; and Farkas, O.;
Schlegel, H. B. Methods for optimizing
large molecules, Phys. Chem. Chem. Phys.
2002, 4, 11–15

’eigenvectorfollowing’, evf, or ev for a eigenvector following al-
gorithm. By default, it is set to ’bofill’.

• convergence_step_max_coefficient: The convergence thresh-
old for the maximum absolute element of the last step taken. By
default set to 1.0e-4.

• convergence_step_rms: The convergence threshold for the root
mean square of the last step taken. By default set to 5.0e-4.

• convergence_gradient_max_coefficient: The convergence thresh-
old for the maximum absolute element of the gradient. By default
set to 5.0e-5.

• convergence_gradient_rms: The convergence threshold for the
root mean square of the gradient. By default set to 1.0e-5.

• convergence_delta_value: The convergence threshold for the
change in the functional value. By default set to 1.0e-7.

14 scine readuct manual

• convergence_max_iterations: The maximum number of itera-
tions. By default set to 100.

• convergence_requirement: The number of criteria that have to
converge besides the value criterion (convergence_delta_value).
This has to be between 0 and 4; by default it is set to 3.

If you specified optimizer: ’bofill’, you can also set the following
option:

• bofill_trust_radius: The maximum root mean square of a taken
step. By default set to 0.1.

If you specified optimizer: ’eigenvector_following’, ’eigenvectorfollowing’,
evf, or ev, you can also set the following option:

• ev_trust_radius: The maximum root mean square of a taken step.
By default set to 0.5.

Intrinsic Reaction Coordinate Calculation

This task is used to an intrinsic reaction coordinate (IRC) calculation.
In order to carry out this task, specify any of the following in the
respective task block: type: ’ircopt’, or type: ’irc’. Note that
for this task you have to specify two output systems. The first one
will contain the results of the forward IRC calculation while the
second on will contain the result of the backward IRC calculation.

You usually want to set the following settings:

• irc_mode: This sets the normal mode which should be used for the
IRC calculation. By default set to zero (designates the first normal
mode).

The task works without the specification of any additional settings;
the default settings work usually fine. However, if desired, the fol-
lowing settings can always be set:

• optimizer: This sets the desired optimization algorithm. You can
set ’lbfgs’ for the L-BFGS algorithm, and ’steepestdescent’

or ’sd’ for a steepest descent algorithm. By default, it is set to
’lbfgs’.

• convergence_step_max_coefficient: The convergence thresh-
old for the maximum absolute element of the last step taken. By
default set to 1.0e-4.

• convergence_step_rms: The convergence threshold for the root
mean square of the last step taken. By default set to 5.0e-4.

using the standalone binary 15

• convergence_gradient_max_coefficient: The convergence thresh-
old for the maximum absolute element of the gradient. By default
set to 5.0e-5.

• convergence_gradient_rms: The convergence threshold for the
root mean square of the gradient. By default set to 1.0e-5.

• convergence_delta_value: The convergence threshold for the
change in the functional value. By default set to 1.0e-7.

• convergence_max_iterations: The maximum number of itera-
tions. By default set to 100.

• convergence_requirement: The number of criteria that have to
converge besides the value criterion. This must be between 0 and
4; by default it is set to 3.

If you specified optimizer: ’lbfgs’, you can also set the following
options:

• lbfgs_maxm: The number of parameters and gradients from previ-
ous iterations to keep. By default set to 50.

• lbfgs_linesearch: Whether to use a line search or not. By default
set to true.

• lbfgs_c1: The first parameter of the Wolfe conditions. This option
is only relevant if line search is used (see above). By default set to
0.0001.

• lbfgs_c2: The second parameter of the Wolfe conditions. This
option is only relevant if line search is used (see above). By default
set to 0.9.

• lbfgs_step_length: The initial step length. By default set to 1.0.

• lbfgs_use_trust_radius: Whether to use the trust radius. By
default set to false.

• lbfgs_trust_radius: The maximum size of a taken step. By de-
fault set to 0.1.

If you specified optimizer: ’steepestdescent’ or optimizer:
’sd’, you can also set the following options:

• sd_factor: The scaling factor to be used in the steepest descent
algorithm. By default set to 0.1.

16 scine readuct manual

Artificial Force Induced Reaction Calculation

This task is used in order to do an artificial force induced reaction
(AFIR7) calculation. In order to carry out this task, specify any of the 7 Maeda, S.; Morokuma, K. Commu-

nications: A systematic method for
locating transition structures of A+B
→ X type reactions, J. Chem. Phys.
2010, 132, 241102; and Maeda, S.; Mo-
rokuma, K. Finding Reaction Pathways
of Type A + B→ X: Toward Systematic
Prediction of Reaction Mechanisms, J.
Chem. Theory Comput. 2011, 7, 2335–2345

following in the respective task block: type: ’afir_optimization’,
type: ’afiroptimization’, type: ’afiropt’, or type: ’afir’.

You usually want to set the following settings:

• afir_rhs_list: This specifies list of indices of atoms to be artifi-
cially forced onto or away from those in the LHS list (see below).
By default, this list is empty. Note that the first atom has the index
zero.

• afir_lhs_list: This specifies list of indices of atoms to be artifi-
cially forced onto or away from those in the RHS list (see above).
By default, this list is empty. Note that the first atom has the index
zero.

The task works without the specification of any additional settings;
the default settings work usually fine. However, if desired, the fol-
lowing settings can always be set:

• afir_weak_forces: This activates an additional, weakly attractive
force applied to all atom pairs. By default set to false.

• afir_attractive: Specifies whether the artificial force is attractive
or repulsive. By default set to true, which means that the force is
attractive.

• afir_energy_allowance: The maximum amount of energy to be
added by the artifical force, in kJ/mol. By default set to 1000.

• afir_phase_in: The number of steps over which the full attractive
force is gradually applied. By default set to 100.

• afir_transform_coordinates: Whether to transform the coordi-
nates from a Cartesian basis into an internal space. By default set
to true.

• optimizer: This sets the desired optimization algorithm. You can
set ’lbfgs’ for the L-BFGS algorithm, and ’steepestdescent’

or ’sd’ for a steepest descent algorithm. By default, it is set to
’lbfgs’.

• convergence_step_max_coefficient: The convergence thresh-
old for the maximum absolute element of the last step taken. By
default set to 1.0e-4.

using the standalone binary 17

• convergence_step_rms: The convergence threshold for the root
mean square of the last step taken. By default set to 5.0e-4.

• convergence_gradient_max_coefficient: The convergence thresh-
old for the maximum absolute element of the gradient. By default
set to 5.0e-5.

• convergence_gradient_rms: The convergence threshold for the
root mean square of the gradient. By default set to 1.0e-5.

• convergence_delta_value: The convergence threshold for the
change in the functional value. By default set to 1.0e-7.

• convergence_max_iterations: The maximum number of itera-
tions. By default set to 100.

• convergence_requirement: The number of criteria that have to
converge besides the value criterion. This has to be between 0 and
4; by default it is set to 3.

If you specified optimizer: ’lbfgs’, you can also set the following
options:

• lbfgs_maxm: The number of parameters and gradients from previ-
ous iterations to keep. By default set to 50.

• lbfgs_linesearch: Whether to use a line search or not. By default
set to true.

• lbfgs_c1: The first parameter of the Wolfe conditions. This option
is only relevant if line search is used (see above). By default set to
0.0001.

• lbfgs_c2: The second parameter of the Wolfe conditions. This
option is only relevant if line search is used (see above). By default
set to 0.9.

• lbfgs_step_length: The initial step length. By default set to 1.0.

• lbfgs_use_trust_radius: Whether to use the trust radius. By
default set to false.

• lbfgs_trust_radius: The maximum size of a taken step. By de-
fault set to 0.1.

If you specified optimizer: ’steepestdescent’ or optimizer:
’sd’, you can also set the following options:

• sd_factor: The scaling factor to be used in the steepest descent
algorithm. By default set to 0.1.

18 scine readuct manual

Task Chaining

You can specify multiple tasks to be executed after each other. Tasks
are processed in the order in which they are given in the input file.
For example, the following input file would first carry out a structure
optimization, and then calculate the vibrational frequencies of the
optimized structure:

systems:

- name: ’water’

path: ’h2o.xyz’

program: ’Sparrow’

method: ’PM6’

tasks:

- type: ’geoopt’

input: [’water’]

output: [’water_opt’]

- type: ’hessian’

input: [’water_opt’]

Using the Python Library

ReaDuct provides Python bindings such that all functionality of
ReaDuct can be accessed also via the Python programming lan-
guage. In order to build the Python bindings, you need to specify
-DSCINE_BUILD_PYTHON_BINDINGS=ON when running cmake (see also
chapter Installation).

In order to use the Python bindings, you need to specify the path to
the Python library in the environment variable PYTHONPATH, e.g., you
have to run the command

export PYTHONPATH=$PYTHONPATH:<source code directory>/install/lib

Now, you can simply import the library and use it as any other
Python library. For example, in order to carry out a structure opti-
mization, you could use the following Python script:

import scine_readuct

system1 = scine_readuct.load_system(’h2o.xyz’, ’PM6’, program=’Sparrow’,

molecular_charge=0, spin_multiplicity=1)

systems = {}

systems[’water’] = system1

task1 = scine_readuct.run_opt_task(systems, [’water’], output=[’water_opt’],

optimizer=’lbfgs’)

systems[’water_opt’].positions

Note that we use a dictionary called “systems” to store all systems
we deal with in one central data structure. As second argument, the
structure optimization task accepts a list of the systems which should
be optimized, i.e., the dictionary “systems” can contain more systems
but these will not be optimized (all other tasks work with the same
concept). The output system(s) will be automatically added to the
systems dictionary.

20 scine readuct manual

A detailed list of all the functions provided by the ReaDuct Python
library can be found by running

import scine_readuct

help(scine_readuct)

Extensions Planned in Future Releases

• Interfaces to other quantum chemical packages such as Gaussian

and Serenity
8 8 Unsleber, J. P.; Dresselhaus, T.;

Klahr, K.; Schnieders, D.; Böckers, M.;
Barton, D.; Neugebauer, J. Seren-
ity: A subsystem quantum chemistry
program, J. Comput. Chem. 2018, 39,
788–798

• Implementation of B-Spline optimization of transition state struc-
tures9

9 Vaucher, A. C.; Reiher, M. Minimum
Energy Paths and Transition States by
Curve Optimization, J. Chem. Theory
Comput. 2018, 14, 3091–3099

Important References

Please consult the following references for more details on ReaDuct.
We kindly ask you to cite the following reference in any publication
of results obtained with ReaDuct.

A. C. Vaucher, M. Reiher "Minimum Energy Paths and Transition
States by Curve Optimization", J. Chem. Theory Comput., 2018, 16,
3091.

https://pubs.acs.org/doi/10.1021/acs.jctc.8b00169
https://pubs.acs.org/doi/10.1021/acs.jctc.8b00169

Bibliography

[1] Husch, T.; Vaucher, A. C.; Reiher, M. Semiempirical molecu-
lar orbital models based on the neglect of diatomic differential
overlap approximation, Int. J. Quantum Chem. 2018, 118, e25799.

[2] Neese, F. The ORCA program system, Wiley Interdiscip. Rev. Com-
put. Mol. Sci. 2012, 2, 73–78.

[3] Nocedal, J. Updating Quasi-Newton Matrices With Limited Stor-
age, Math. Comp. 1980, 35, 773–782.

[4] Bofill, J. M. Updated Hessian Matrix and the Restricted Step
Method for Locating Transition Structures, J. Comput. Chem. 1994,
15, 1-11.

[5] Farkas, O.; Schlegel, H. B. Methods for optimizing large
molecules, Phys. Chem. Chem. Phys. 2002, 4, 11–15.

[6] Maeda, S.; Morokuma, K. Communications: A systematic
method for locating transition structures of A+B→ X type re-
actions, J. Chem. Phys. 2010, 132, 241102.

[7] Maeda, S.; Morokuma, K. Finding Reaction Pathways of Type A
+ B→ X: Toward Systematic Prediction of Reaction Mechanisms,
J. Chem. Theory Comput. 2011, 7, 2335–2345.

[8] Unsleber, J. P.; Dresselhaus, T.; Klahr, K.; Schnieders, D.; Böck-
ers, M.; Barton, D.; Neugebauer, J. Serenity: A subsystem
quantum chemistry program, J. Comput. Chem. 2018, 39, 788–798.

[9] Vaucher, A. C.; Reiher, M. Minimum Energy Paths and Transi-
tion States by Curve Optimization, J. Chem. Theory Comput. 2018,
14, 3091–3099.

	Introduction
	Obtaining the Software
	System Requirements

	Installation
	Using the Standalone Binary
	General Structure of the Input File
	Supported Programs and Methods
	Tasks
	Task Chaining

	Using the Python Library
	Extensions Planned in Future Releases
	Important References

