
T H E S C I N E S PA R R O W D E V E L O P E R S :

F R A N C E S C O B O S I A , TA M A R A H U S C H , C H A R -

L O T T E H . M Ü L L E R , S E V E R I N P O L O N I U S , J A N -

G R I M O S O B E Z , M I G U E L S T E I N E R , J A N P. U N -

S L E B E R , A L A I N C . VA U C H E R , T H O M A S W E Y-

M U T H , A N D M A R K U S R E I H E R

U S E R M A N U A L

S C I N E S PA R R O W 4 . 0 . 0

E T H Z Ü R I C H

Copyright © 2023 The SCINE Sparrow Developers:

Francesco Bosia, Tamara Husch, Charlotte H. Müller, Severin Polonius, Jan-Grimo Sobez, Miguel Steiner,
Jan P. Unsleber, Alain C. Vaucher, Thomas Weymuth, and Markus Reiher

https://scine.ethz.ch/download/sparrow

Unless required by applicable law or agreed to in writing, the software is distributed on an “as is” basis,
without warranties or conditions of any kind, either express or implied.

Contents

Introduction 5

Obtaining the Software 6

Installation 7

Example Calculation 8

Detailed Documentation 10

Using the Python Bindings 16

Extensions Planned in Future Releases 21

References 22

Introduction

The availability of fast electronic energies and gradients is essen-
tial for the SCINE project. The SCINE Sparrow module contains
electronic structure models which were designed to yield electronic
energies, energy gradients with respect to the nuclear coordinates,
and Hessians rapidly. The SCINE Sparrow module can be driven
from SCINE Interactive, SCINE ReaDuct, and SCINE Chemo-
ton. However, as with all SCINE modules it is also a stand-alone
program which can be applied on its own or easily interfaced to
other programs.

SCINE Sparrow is a command-line tool that implements many pop-
ular semiempirical models. SCINE Sparrow 4.0.0 provides the MNDO,
AM1, RM1, PM3, PM6, non-SCC DFTB (DFTB0), DFTB2, and DFTB3 methods
(open- and closed-shell formalisms are implemented). The applica-
tion of semiempirical models usually allows for rapid calculation
of electronic energies and energy gradients for a small molecular
structure with a given charge and spin state.

In this manual, we describe the installation of the software, an exam-
ple calculation as a hands-on introduction to the program, and the
most import functions and options.1 A prospect on features in future 1 Throughout this manual, the most

import information is displayed in the
main text, whereas useful additional
information is given as a side note like
this one.

releases and references for further reading are added at the end of
this manual.

Obtaining the Software

Sparrow is distributed as open source software in the framework of
the SCINE project (www.scine.ethz.ch). Visit our website (www.scine.ethz.ch/download/sparrow)
to obtain the software.

System Requirements

Sparrow itself has only modest requirements regarding the hard-
ware performance. However, the underlying quantum-chemical cal-
culations might become resource intensive if extremely large systems
are studied.

https://scine.ethz.ch/
https://scine.ethz.ch/download/sparrow

Installation

Sparrow is distributed as an open source code. In order to compile
Sparrow from this source code, you need

• A C++ compiler supporting the C++17 standard,

• cmake (at least version 3.9),

• the Boost library (at least version 1.65.0), and

• the Eigen3 library (at least version 3.3.2).

In order to compile the software, either directly clone the repository
with git or extract the downloaded tarball, change to the source di-
rectory and execute the following steps:

git submodule init

git submodule update

mkdir build install

cd build

cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=../install ..

make

make test

make install

export PATH=$PATH:<source code directory>/install/bin

This will configure everything, compile your software, run the tests,
and install the software into the folder “install”. Finally, it will add
the Sparrow binary to your PATH, such that you can use it without
having to specify its full location. In this last command, you have
to replace <source code directory> with the full path where you
stored the source code of Sparrow.

In case you need support with the setup of Sparrow, please contact
us by writing to scine@phys.chem.ethz.ch.

scine@phys.chem.ethz.ch

Example Calculation

Sparrow is a command-line-only binary; there is no graphical user
interface. Therefore, you always work with the Sparrow binary on
a command line such as the Gnome Terminal or KDE Konsole. All
functionality is accessed via command line arguments. All possible
command line options can be listed with the following command:

sparrow --help

In order to provide a practical demonstration of the Sparrow pro-
gram, we present here a step-by-step example calculation that guides
you through the complete process of calculating the total electronic
energy as well as the nuclear gradient and Hessian of a molecular
structure with Sparrow. We start with the following Cartesian coor-
dinates for water:

3

O -0.27939703 0.83823215 0.00973345

H -0.52040310 1.77677325 0.21391146

H 0.54473632 0.90669722 -0.53501306

Store these coordinates in a file named “h2o.xyz”. Then, call Spar-
row with the following command:

sparrow --structure h2o.xyz --molecular_charge 0 --spin_multiplicity 1 --method PM6

This will calculate the electronic energy for the neutral water molecule
with PM6. You can also use the short options

sparrow -x h2o.xyz -c 0 -s 1 -M PM6

to achieve the same result. If you also want to calculate the nuclear
gradient, simply add the option --gradient or -G. For the Hessian,
specify --hessian or -H. For the atomic second derivatives (which
can be used to approximate the Hessian as a block-diagonal matrix
of second derivatives. Both coordinates with respect to which the

example calculation 9

energy is derived refer to the same atom), specify --atomic_hessians

or -A.

Detailed Documentation

Command Line Arguments

In this section, the full functionality of Sparrow is documented, i.e.,
all possible command line arguments are listed and explained.

• --structure, -x: This argument specifies the structure which
should be calculated. It must be given as a path to an XYZ file.

• --molecular_charge, -c: This is used to specify the overall charge
of the system to be calculated, e.g., --molecular_charge 0 or -c
-1. The default charge is zero. Only charges between −20 and +20

are supported.

• --spin_multiplicity, -s: This is used to specify the spin multi-
plicity of the system to be calculated, e.g., -s 1 for a singlet state.
The default multiplicity is one. The maximal spin multiplicity is
10.

• --gradients, -G: If given, the nuclear gradients will be calculated.

• --hessian, -H: If given, the Hessian and the nuclear gradients will
be calculated.

• --atomic_hessians, -A: If given, a list of the atomic second deriva-
tives will be calculated.

• --thermochemistry, -C: If given, the heat capacities at constant
volume or pressure, the enthalpy, the entropy, the Gibbs free en-
thalpy as well as the zero point vibrational energy (ZPVE) are
calculated from the total molecular partition function. The calcula-
tion of the thermochemical properties requires the Hessian matrix:
its calculation is therefore implied by setting this option.

• --symmetry_number, -S: Specifies the point group-dependent
molecular symmetry number σ for the calculation of thermochem-
ical properties. It is not adapted automatically for molecules with

detailed documentation 11

more than two atoms. The default value is one.

• --temperature, -T: This is used to specify the temperature in
Kelvin at which the thermochemical properties are calculated. The
default temperature is 298.15 K. The maximum allowed tempera-
ture is 10’000 K.

• --suppress_normal_modes, -N: If given, the full Hessian will be
printed instead of the normal modes and the vibrational frequen-
cies. This option has no effect if the Hessian is not calculated (see
above).

• --bond_orders, -B: If given, the bond order matrix will be calcu-
lated.

• --method, -M: With this option, the desired calculation method
can be set. Options in Sparrow 4.0.0 are MNDO, AM1, RM1, PM3, PM6,
DFTB0, DFTB2, and DFTB3. By default, PM6 is selected.

• --output_to_file, -o: If this option is given, the output will not
only be printed to the screen, but also to files. By default, the en-
ergy is stored in a file named “energy.dat”, the nuclear gradients
in a file named “gradients.dat”, the Hessian in a file named “hes-
sian.dat”, the atomic Hessians in a file named “atomic_hessians.dat”,
and the bond order matrix in a file named “bond_orders.dat”. If a
description is given with the option -d (see below), this description
will also be used in the file name.

• --description, -D: This can be used to add a (short) description
of the calculation. This description will appear in the output. This
allows to quickly find a certain calculation output at a later point.
The description should be enclosed by quotation marks if it is
composed by more than one word, e.g., -d "This is an example".

• --unrestricted_calculation, -u: If this option is given, an un-
restricted (UHF) calculation will be performed. By default, a re-
stricted calculation will be done.

• --wavefunction, -W: If this option is given, a Molden input file
is generated after the calculation to allow for the visualization
of the molecular orbitals.The basis functions used for the gen-
eration of the Molden input are defined in the files <source code

directory>/Sparrow/Sparrow/Resources/<method>/<method>-STO-6G.basis.
All NDDO methods have their own STO-6G expansion which are
fine tuned based on the method’s parameters. For the DFTB meth-
ods, the same basis set as PM6 is used.

• --excited_states, -E: If this option is given, an electronic excited

12 scine sparrow manual

states calculation will be performed. Vertical transition energies
and transition properties result from single electron substitu-
tions for DFTB0, TD-DFTB formalism for DFTB2 and DFTB3 and
NDDO-CIS for all NDDO methods.

• --number_eigenstates, -r: Specifies the desired number of excited
states. Note that this option is only considered when the option -E

(see above) is also given. By default, one excited state is calculated.

• --initial_subspace_dimension, -n: Specifies the desired number
of initial guess vectors for the calculation of the excited states
with TD-DFTB or NDDO-CIS. Multiples of the desired number of
excited states may have a beneficial impact on the computational
time. Note that this option is only considered when the option -E

(see above) is also given. The default value is 0.

• --spin_block, -b: Specifies the desired excited-state symmetry to
compute. Possible values are -b singlet for singlet excited states,
-b triplet for triplet excited states, and -b both if excited states
of both spin symmetries are desired. This option has no effect if
an unrestricted calculation is performed. Note that this option is
only considered when the option -E (see above) is also given. By
default, the singlet states are computed.

• --number_orbital_mixes -O: Sets the number of orbital steers to
carry out, if 0, no steering occurs. The default is 0, so no steering.
The command --number_orbital_mixes 3 causes the program
to first do a reference calculation, then three rounds of random
mixing of the orbitals, followed by an acceptance of the lowest
energy.

• --number_orbitals_to_mix: Specifies how many occupied–virtual
orbital pairs are sampled without replacement and mixed together
in each mixing round of the orbital steering. The default is 15

orbital pairs.

• --number_orbitals_to_consider: Specifies the number of orbitals
around the Fermi level that will form the set from which the or-
bital steering samples the occupied–virtual orbital pairs that can be
mixed. The default is 0, which causes the program to consider all
the orbitals

• --maximal_mixing_angle: Specifies the maximal angle in degrees
for the mixing of the occupied–virtual orbital pairs in the orbital
steering. The default value is 90 degrees, i.e. the angle for which
the two orbitals are swapped.

• --minimal_mixing_angle: Specifies the minimal angle in degrees

detailed documentation 13

for the mixing of the occupied–virtual orbital pairs in the orbital
steering. The default value is 0 degrees, i.e. the angle for which
nothing happens. The new, mixed orbitals are obtained according
to:

φocc,new = cos α · φocc,old + sin α · φvir,old

φvir,new = cos α · φvir,old − sin α · φocc,old .

The following options are usually not needed:

• --help, -h: This prints a short help message listing and explaining
all possible command line arguments

• --scf_mixer, -m: With this option, the method used to accelerate
the convergence of the self- consistent-field (SCF) calculations can
be set. Possible options are ‘no_mixer‘ (no convergence accelera-
tion), ‘diis‘ (direct inversion of the iterative subspace, DIIS), ‘ediis‘
(energy DIIS), and ‘ediis_diis‘. The default is ‘diis‘.

• --max_scf_iterations, -I: This is used to specify the maximum
number of SCF iterations. Default is 100.

• --self_consistence_criterion, -t: This specifies the convergence
threshold for the electronic energy. This value is given in hartree.
By default, it is ‘1e-7‘.

• --density_rmsd_criterion: This specifies the convergence thresh-
old for the density difference between iterations (density matrix
RMSD). By default, it is ‘1e-5‘.

• --method_parameters, -p: This option can be used to specify the
path of the parameter file to be used. This option is usually not
needed, since Sparrow provides default parameter for all its
methods.

• --excited_parameterfile, -j: This option can be used to specify
the path of the parameter file for the excited-state calculation with
NDDO-CIS to be used. This option is usually not needed, since
Sparrow provides default parameter for the excited-state calcula-
tion with all its methods. Note that this option is only considered
when the option -E (see above) is also given.

• --log, -l: This sets the log level for warning messages and errors.
Supported levels are debug, output, warning, error, and none. By
default, the level is set to warning, i.e., all warnings are printed to
STDOUT and errors are printed to STDERR. If you set this option
to error, only errors are printed. If you set this to none, neither

14 scine sparrow manual

warnings nor errors are printed. If you set this option to a string
other than the ones indicated above, an exception is thrown.

• --log_filename, -f: This sets the name of the file where the log-
ging shall be printed. By default, logging to file is disabled.

• --distance_threshold, -d: specifies the desired distance cutoff for
the 2-electron interactions in nddo-cis excited-state calculations.
This feature can lead to calculations not converging. Default is no
screening.

• --prune_basis, -y: if this option is given, the TD-DFTB calcula-
tion is performed in a pruned determinant basis. The pruning is
specified by the options --energy_threshold and --pt_threshold.

• --energy_threshold, -e: specifies the desired energy cutoff in a.u.
for the basis functions spanning the excited stated to be included.
Every basis function characterized by a single orbital substitu-
tion between orbitals with an energy difference smaller than this
threshold is included to the pruned basis.

• --pt_threshold: specifies the desired perturbation theory cutoff
in a.u. (for TDA calculations) or in a.u.2 (for full TD-DFTB calcu-
lations) for the basis functions spanning the excited stated to be
included. Every basis function whose cumulative interaction with
basis functions included with the --energy_threshold criterion is
larger than this threshold is included to the pruned basis.

• --max_memory, -g: specifies the maximum memory the excited-
state calculation can take. This is estimated from the size of the
excited-state basis dimension and the number of desired roots.

• --scf_mixer_steering: With this option, the method used to
accelerate the convergence of the self- consistent-field (SCF) calcu-
lations after an orbital steering mix can be set. Possible options are
‘no_mixer‘ (no convergence acceleration), ‘diis‘ (direct inversion of
the iterative subspace, DIIS), ‘ediis‘ (energy DIIS), and ‘ediis_diis‘.
The default is ‘diis‘.

• --max_iterations_in_steering: This is used to specify the max-
imum number of SCF iterations after an orbital steering mix. De-
fault is 100.

Running Sparrow in Parallel

By default, Sparrow will be compiled with OpenMP support and
hence, it can be run in parallel. In order to use multiple CPU cores,

detailed documentation 15

simply specify

export OMP_NUM_THREADS=n

where n is the number of CPUs you want to use. Note that by de-
fault, Sparrow uses all available cores, i.e., it will also run in parallel
if you do not specify the above environment variable.

Using the Python Bindings

Sparrow provides Python bindings such that all functionality of
Sparrow can be accessed also via the Python programming lan-
guage. In order to build the Python bindings, you need to specify
-DSCINE_BUILD_PYTHON_BINDINGS=ON when running cmake (see also
chapter Installation). Some options, for instance, the convergence
of the excited-state subspace solver, are only present in the Python
bindings. Please note that the setting types are rigorously checked
in Python. It is important not to confuse integer and floating point
types! For instance, there is a difference between 1 (an integer type)
and 1.0 (a floating point type).

In order to use the Python bindings, you need to specify the path to
the Python library in the environment variable PYTHONPATH, e.g., you
have to run the command

export PYTHONPATH=$PYTHONPATH:<source code directory>/install/lib/python<version>/site-packages

where <version> is the Python version you are using (e.g., 3.6). Now,
you can simply import the library and use it as any other Python
library. For example, in order to calculate the total electronic energy
of H2 with the AM1 method as well as the gradient and the atomic
second derivatives (where the latter can be used to approximate the
Hessian as a block-diagonal matrix of second derivatives), use the
following Python statements:

import scine_utilities as su

import scine_sparrow

Generate Structure

structure = su.AtomCollection()

structure.elements = [su.ElementType.H, su.ElementType.H]

structure.positions = [[-0.7, 0, 0], [0.7, 0, 0]]

Get calculator

manager = su.core.ModuleManager()

using the python bindings 17

calculator = manager.get(’calculator’, ’AM1’)

Configure Calculator

calculator.structure = structure

calculator.set_required_properties([su.Property.Energy,

su.Property.Gradients,

su.Property.AtomicHessians])

Calculate

results = calculator.calculate()

print(results.energy)

print(results.gradients)

Print the atomic second derivatives as a list of 3x3 matrices.

To use this as an approximation of the total Hessian, this output

needs to be rearranged in a block-diagonal matrix.

print(results.atomic_hessian.get_atomic_hessians())

The output of Sparrow is always in Hartree atomic units, also the
input is expected in Hartree atomic units.

A detailed list of all the functions provided by the SCINE Python
libraries can be found by running

import scine_utilities

help(scine_utilities)

The import of the SCINE Sparrow module mainly makes the in-
cluded methods available. A shorter version of the above code could
be written using an XYZ file input.

import scine_utilities as su

import scine_sparrow

Load xyz into calculator

manager = su.core.ModuleManager()

calculator = manager.get(’calculator’, ’AM1’)

calculator.structure = su.io.read(’h2.xyz’)[0]

Configure Calculator

calculator.set_required_properties([su.Property.Energy,su.Property.Gradients])

calculate

results = calculator.calculate()

print(results.energy)

print(results.gradients)

18 scine sparrow manual

In the latter example, the XYZ file is expected in Å, all results will
still be in Hartree atomic units.

Excited-state calculations can also be calculated with the SCINE
Sparrow module:

import scine_utilities as su

import scine_sparrow

Generate structure

This can also be done with

structure = su.io.read(’structure.xyz’)

(will automatically be converted to bohr)

structure = su.AtomCollection(6)

structure.elements = [su.ElementType.C, su.ElementType.C, su.ElementType.H,

su.ElementType.H, su.ElementType.H, su.ElementType.H]

in angstrom

structure.positions = [[0.94815, 0.05810, 0.05008],

[2.28393, 0.05810, 0.05008],

[0.38826, -0.56287, 0.74233],

[0.38826, 0.67907, -0.64217],

[2.84382, -0.56287, 0.74233],

[2.84382, 0.67907, -0.64217]]

structure.positions = structure.positions * su.BOHR_PER_ANGSTROM

Get excited-state calculator

manager = su.core.ModuleManager()

excited_states_calculator = manager.get(’calculator_with_reference’, ’TD-DFTB’)

Generate a suitable ground-state reference calculator

excited_states_calculator.reference_calculator = manager.get(’calculator’, ’DFTB2’)

Configure the calculation

excited_states_calculator.reference_calculator.settings[’self_consistence_criterion’]=1e-9

excited_states_calculator.settings[’number_eigenstates’] = 3

excited_states_calculator.settings[’initial_subspace_dimension’] = 3

Carry out the ground-state calculation

excited_states_calculator.reference_calculator.structure = structure

excited_states_calculator.reference_calculation()

Carry out the excited-state calculation

result = excited_states_calculator.calculate()

Print the vertical transition energies and the oscillator strengths

print(result.excited_states.singlet.eigenstates.eigenvalues * su.EV_PER_HARTREE)

using the python bindings 19

su.transition_dipole_to_oscillator_strength(result.excited_states.singlet.transition_dipoles,

result.excited_states.singlet.eigenstates.eigenvalues)

Print the labels of the transition density matrix elements

and their coefficients in the first excited state

print(result.excited_states.mo_labels)

print(result.excited_states.singlet.eigenstates.eigenvectors[:,0])

Orbital steering calculations can also be calculated with the SCINE
Sparrow module:

import scine_utilities as su

import scine_sparrow

Generate structure

This can also be done with

structure = su.io.read(’structure.xyz’)

(will automatically be converted to bohr)

structure = su.AtomCollection(6)

structure.elements = [su.ElementType.C, su.ElementType.C, su.ElementType.H,

su.ElementType.H, su.ElementType.H, su.ElementType.H]

in angstrom

structure.positions = [[0.94815, 0.05810, 0.05008],

[2.28393, 0.05810, 0.05008],

[0.38826, -0.56287, 0.74233],

[0.38826, 0.67907, -0.64217],

[2.84382, -0.56287, 0.74233],

[2.84382, 0.67907, -0.64217]]

structure.positions = structure.positions * su.BOHR_PER_ANGSTROM

Get orbital steering calculator

manager = su.core.ModuleManager()

orbital_steering_calculator = manager.get(’calculator_with_reference’,

’orbital_steering’)

Generate a suitable reference calculator

calc = manager.get(’calculator’, ’PM6’)

calc.structure = structure

calc.settings[’self_consistence_criterion’] = 1e-8

calc.settings[’spin_mode’] = ’unrestricted’

orbital_steering_calculator.reference_calculator = calc

Configure the calculation

How often a steering of the orbitals is carried out (1 = every call to

"calculate()", 2 = every second call to "calculate()", ...)

20 scine sparrow manual

Often steering the orbitals after each single point is not needed, and

the additional cost is not justified. In those cases, one can carry out

a steering calculation, e.g., every 5th single-point calculations. Since the

density guess is taken to be the solution of the previous calculation,

a steered guess will provide a suitable solution for subsequent calculations.

orbital_steering_calculator.settings[’mixing_frequency’] = 5

How many occupied-virtual orbital pairs are created to mix

orbital_steering_calculator.settings[’number_orbitals_to_mix’] = 15

Note: not 0 and 90, as those would be integers.

orbital_steering_calculator.settings[’minimal_mixing_angle’] = 0.0

orbital_steering_calculator.settings[’maximal_mixing_angle’] = 90.0

You can set other convergence criteria in the orbital steering calculations.

orbital_steering_calculator.settings[’max_scf_iterations’] = 200

orbital_steering_calculator.settings[’scf_mixer’] = ’ediis_diis’

Carry out ground-state calculation without steering (not needed, but you can

do it). This will not increment the counter used to determine when a steering is

needed.

orbital_steering_calculator.reference_calculation()

Carry out the orbital-steering calculation

result = orbital_steering_calculator.calculate()

Extensions Planned in Future Releases

• Availability of OMx models

• Availability of the CISE approach

• Implementation of multireference semiempirical approach

• Implementation of periodic boundary conditions

References

Please consult the following references for more details on Sparrow.
We kindly ask you to cite the appropriate references in any publica-
tion of results obtained with Sparrow.

• Primary reference for Sparrow 4.0.0: F. Bosia, T. Husch, C. H. Müller,
S. Polonius, J.-G. Sobez, M. Steiner, J. P. Unsleber, A. C. Vaucher,
T. Weymuth, M. Reiher, "qcscine/sparrow: Release 4.0.0 (Version
4.0.0)", Zenodo, 2023.

• Presentation of the formalism of MNDO-type and OMx models:

T. Husch, A. C. Vaucher, M. Reiher "Semiempirical Molecular
Orbital Models Based on the Neglect of Diatomic Differential
Overlap Approximation", Int. J. Quantum Chem., 2018, 118, e25799.

• Presentation of DFTB approaches:

M. Elstner, G. Seifert, "Density functional tight binding", Phil.
Trans. R. Soc. A, 2014, 371, 20120483.

• Presentation of CISE:

T. Husch, M. Reiher "Comprehensive Analysis of the Neglect of
Diatomic Differential Overlap Approximation", J. Chem. Theory
Comput., 2018, 14, 5169.

• Presentation of the Orbital Steering approach:

A. C. Vaucher, M. Reiher "Steering Orbital Optimization out of Lo-
cal Minima and Saddle Points Toward Lower Energy", J. Chem. The-
ory Comput., 2017, 13, 1219.

If you publish DFTB results, we kindly ask you to cite the references
for the underlying parameters, which are specified in the README
file in the respective parameter directory. The default parameters are
mio-1-1 for DFTB2 and 3ob-3-1 for all other DFTB variations.

https://doi.org/10.5281/zenodo.3244105
https://doi.org/10.5281/zenodo.3244105
https://doi.org/10.1002/qua.25799
https://doi.org/10.1002/qua.25799
https://doi.org/10.1002/qua.25799
https://doi.org/10.1098/rsta.2012.0483
https://doi.org/10.1021/acs.jctc.8b00601
https://doi.org/10.1021/acs.jctc.8b00601
https://doi.org/10.1021/acs.jctc.7b00011
https://doi.org/10.1021/acs.jctc.7b00011

	Introduction
	Obtaining the Software
	System Requirements

	Installation
	Example Calculation
	Detailed Documentation
	Command Line Arguments
	Running Sparrow in Parallel

	Using the Python Bindings
	Extensions Planned in Future Releases
	References

