Namespace Scine::Sparrow::nddo

namespace nddo

Enums

enum BasisFunctions

Values:

sp
spd
enum sc_t

Values:

F0ss
F0pp
F0dd
F0sp
F0sd
F0pd
F2pp
F2dd
F2pd
F4dd
G1sp
G1pd
G2sd
G3pd
R1sppd
R2sdpp
R2sddd

Functions

template<>
Utils::AutomaticDifferentiation::Value1DType<Utils::derivOrder::zero> integral<Utils::derivOrder::zero>(double R) const
template<>
Utils::AutomaticDifferentiation::Value1DType<Utils::derivOrder::one> integral<Utils::derivOrder::one>(double R) const
template<>
Utils::AutomaticDifferentiation::Value1DType<Utils::derivOrder::two> integral<Utils::derivOrder::two>(double R) const
template<>
Utils::AutomaticDifferentiation::DerivativeType<Utils::derivativeType::first> getDerivative<Utils::derivativeType::first>() const
template<>
Utils::AutomaticDifferentiation::DerivativeType<Utils::derivativeType::second_atomic> getDerivative<Utils::derivativeType::second_atomic>() const
template<>
Utils::AutomaticDifferentiation::DerivativeType<Utils::derivativeType::second_full> getDerivative<Utils::derivativeType::second_full>() const
template<>
Utils::AutomaticDifferentiation::Value1DType<Utils::derivOrder::zero> integral<Utils::derivOrder::zero>(double R) const
template<>
Utils::AutomaticDifferentiation::Value1DType<Utils::derivOrder::one> integral<Utils::derivOrder::one>(double R) const
template<>
Utils::AutomaticDifferentiation::Value1DType<Utils::derivOrder::two> integral<Utils::derivOrder::two>(double R) const
template<>
Utils::AutomaticDifferentiation::DerivativeType<Utils::derivativeType::first> getDerivative<Utils::derivativeType::first>() const
template<>
Utils::AutomaticDifferentiation::DerivativeType<Utils::derivativeType::second_atomic> getDerivative<Utils::derivativeType::second_atomic>() const
template<>
Utils::AutomaticDifferentiation::DerivativeType<Utils::derivativeType::second_full> getDerivative<Utils::derivativeType::second_full>() const
template<>
Utils::AutomaticDifferentiation::Value1DType<Utils::derivOrder::zero> integral<Utils::derivOrder::zero>(double R) const
template<>
Utils::AutomaticDifferentiation::Value1DType<Utils::derivOrder::one> integral<Utils::derivOrder::one>(double R) const
template<>
Utils::AutomaticDifferentiation::Value1DType<Utils::derivOrder::two> integral<Utils::derivOrder::two>(double R) const
template<>
Utils::AutomaticDifferentiation::DerivativeType<Utils::derivativeType::first> getDerivative<Utils::derivativeType::first>() const
template<>
Utils::AutomaticDifferentiation::DerivativeType<Utils::derivativeType::second_atomic> getDerivative<Utils::derivativeType::second_atomic>() const
template<>
Utils::AutomaticDifferentiation::DerivativeType<Utils::derivativeType::second_full> getDerivative<Utils::derivativeType::second_full>() const
class AM1PairwiseRepulsion
#include <AM1PairwiseRepulsion.h>

This class calculates the core-core repulsion between two atoms.

class AM1RepulsionEnergy : public RepulsionCalculator
#include <AM1RepulsionEnergy.h>

This class sums up the core-core repulsion energies and the corresponding derivatives with respect to the nuclear cartesian coordinate between all pairs of cores.

It inherits from Utils::RepulsionCalculator in order for it to work with the LCAO/SCFMethod polymorphic system.

class MNDOPairwiseRepulsion
#include <MNDOPairwiseRepulsion.h>

This class calculates the core-core repulsion between two atoms.

class MNDORepulsionEnergy : public RepulsionCalculator
#include <MNDORepulsionEnergy.h>

This class sums up the core-core repulsion energies and the corresponding derivatives with respect to the nuclear cartesian coordinate between all pairs of cores.

It inherits from Utils::RepulsionCalculator in order for it to work with the LCAO/SCFMethod polymorphic system.

class PM6PairwiseRepulsion
#include <PM6PairwiseRepulsion.h>

This class calculates the core-core repulsion between two atoms.

class PM6RepulsionEnergy : public RepulsionCalculator
#include <PM6RepulsionEnergy.h>

This class sums up the core-core repulsion energies and the corresponding derivatives with respect to the nuclear cartesian coordinate between all pairs of cores.

It inherits from Utils::RepulsionCalculator in order for it to work with the LCAO/SCFMethod polymorphic system.

template<Utils::derivOrder O>
class AtomPairOverlap
#include <AtomPairOverlap.h>

This class computes a block of the overlap matrix for two atoms.

The actual calculation is done by the GTOOverlapMatrixBlock class, here the blocks that need calculation are identified and scheduled for calculation.

template<Utils::derivOrder O>
class GTOOverlapMatrixBlock
#include <GTOOverlapMatrixBlock.h>

This class calculates the overlap matrix block and its derivatives for two groups of orbitals on different atoms, each group of which shares the same angular momentum.

F.i. s-s, s-p, p-d, d-d, … according to the Obara-Saika method.

class OneCenterIntegralContainer
#include <oneCenterIntegralContainer.h>

This class contains smart pointers to one-center two-electron matrices for the atoms in the AtomCollection. Since they are equal for an element type, they are calculated only once per element type.

class OneCenterSlaterIntegral
#include <oneCenterSlaterIntegral.h>

Calculation of the one-centre integrals (related to Slater-Condon parameters) according to Kumar, Mishra, J. Phys., 1987, 29, 385-390. The calculation is not optimized for performance as it does not need to be fast. NB: this returns U^l(a,b,c,d) = R^k(a,c,b,d) as defined in other papers.

class OneCenterTwoElectronCalculator
#include <OneCenterTwoElectronCalculator.h>

This class implements formulas for the calculation of the one-center two-electron integrals from 14 Slater-Condon parameters and three radial parameters. The main reference is Pelikan, P; Turi Nagy L., Chemical Papers, 1974, 28, 594-598. The indexes used here are the same as in the reference minus one. In formula 17 of the reference, sqrt(12) is used instead of 12. In formula 54, R1sppd would be correct instead of R1spdd In formulas 51, 53, 56, 57, R2sppd is R2sdpp

class OneCenterTwoElectronIntegralExpression
#include <OneCenterTwoElectronIntegralExpression.h>

This class allows the creation of instances containing, so to say, the analytical expression for the calculation of a one-center two-electron integral based on Slater-Type parameters.

class OneCenterTwoElectronIntegrals
#include <oneCenterTwoElectronIntegrals.h>

This class calculates all the unique one-center two-electron integrals for a given element.

class OverlapMatrix : public OverlapCalculator
#include <OverlapMatrix.h>

This class computes the whole overlap matrix and returns it in lower diagonal form.

The basis function overlap, as well as its first and second order derivatives with respect to the nuclear cartesian coordinates is calculated. It inherits from OverlapCalculator in order to make this class compatible with its polymorphic useage.

class TwoCenterIntegralContainer
#include <TwoCenterIntegralContainer.h>

This class contains smart pointers to two-center two-electron matrices for different atoms.

This class stores for each atom pair a shared pointer to a Global2c2eMatrix, containing the ERIs between the two centers.

class TwoElectronIntegralIndexes
#include <TwoElectronIntegralIndexes.h>

This class initializes and stores as a static array the indices of the charge distributions on one center playing a role in the multipole expansion.

The generation of the indices array happens only one time being it declared static. The generated charge distributions are located on one single center, as in the NDDO approximation charge distributions centered on two centers are neglected: \( \langle \phi_\mu\phi_\nu | \phi_\\lambda\phi_\sigma \rangle = \vardelta_{IJ}\vardelta_{KL}\langle \chi_\mu^I\chi_\nu^J | \chi_\\lambda^K\chi_\sigma^L\rangle \) In total, 40 possible charge distributions are possible: out of a symmetric 9x9 matrix, the diagonal and the terms that give rise to a charge distribution are retained. In the end 40 indices are stored. 5 charge distributions do not give rise to a multipole:

  • \( p_x d_{yz} \)

  • \( p_y d_{xz} \)

  • \( p_z d_{xy} \)

  • \( p_z d_{x^2 - y^2} \)

  • \( p_xy d_{x^2 - y^2} \)

class NDDODensityGuess : public DensityMatrixGuessCalculator
#include <NDDODensityGuess.h>

Implementation of DensityMatrixGuessCalculator for the NDDO methods.

class NDDOInitializer : public StructureDependentInitializer
#include <NDDOInitializer.h>

Settings for generic NDDO methods.

Reads the parameters and applies them to the system of interest. Depending on the method, the basis functions used can either be BasisFunction::sp (MNDO, AM1) of BasisFunction::spd (i.e. PM6, AM1*, MNDO/d) and it can have just atomic parameters (i.e. AM1, MNDO) or also diatomic parameters (i.e. PM6)

class OneElectronMatrix
#include <OneElectronMatrix.h>

This class generates the one-electron matrix H for semi-empirical methods.

class AtomicParameters
#include <AtomicParameters.h>

Class for the storage of atomic parameters in the semiempirical methods. (only those needed at runtime).

class DiatomicParameters
#include <DiatomicParameters.h>

Class for the storage of pairwise parameters in the PM6 method. (only those needed at runtime)

Subclassed by Scine::Sparrow::nddo::PM6DiatomicParameters

class ElementPairParameters
#include <ElementPairParameters.h>

This class holds the all the pointers to the parameters for element pairs.

class ElementParameters
#include <ElementParameters.h>

This class holds the pointers to the element-specific runtime parameters

class PM6DiatomicParameters : public Scine::Sparrow::nddo::DiatomicParameters
#include <PM6DiatomicParameters.h>

Class for the storage of pairwise parameters in the PM6 method. (only those needed at runtime)

class RawParameterProcessor
#include <RawParameterProcessor.h>

This class implements functions for the conversion between raw parameters published for PM6 and parameters useful at runtime.

struct gaussianRepulsionParameter
#include <RawParameters.h>

Structure to store the atomic information present in the parameter file for PM6.

class RawDiatomicParameters
#include <RawParameters.h>

Structure to store the diatomic information present in the parameter file for PM6.

class RawParametersContainer
#include <RawParametersContainer.h>

Class containing the PM6 parameters in a raw form.

class SlaterCondonParameters
#include <SlaterCondonParameters.h>

This class is the container for the Slater-Condon parameters.

class TwoElectronMatrix
#include <TwoElectronMatrix.h>

Class to generate the two-electron matrix G for semi-empirical methods. This class is parallelized with OpenMP.

namespace GeneralTypes

Enums

enum orb_t

enum indicating the possible orbitals

orb_t::s A s orbital orb_t::x A p_x orbital orb_t::y A p_y orbital orb_t::z A p_z orbital orb_t::x2y2 A d_{x^2-y^2} orbital orb_t::xz A d_{xz} orbital orb_t::z2 A d_{z^2} orbital orb_t::yz A d_{yz} orbital orb_t::xy A d_{xy} orbital

Values:

s
x
y
z
x2y2
xz
z2
yz
xy
enum twoElIntegral_t

enum listing all of the orbital pairs giving rise to a valid charge distribution

Values:

s_s
s_x
x_x
s_y
x_y
y_y
s_z
x_z
y_z
z_z
s_z2
s_xz
s_yz
s_x2y2
s_xy
x_z2
x_xz
x_x2y2
x_xy
y_z2
y_yz
y_x2y2
y_xy
z_z2
z_xz
z_yz
z2_z2
z2_xz
z2_yz
z2_x2y2
z2_xy
xz_xz
xz_yz
xz_x2y2
xz_xy
yz_yz
yz_x2y2
yz_xy
x2y2_x2y2
xy_xy
enum rotationOrbitalPair

Values:

s_s
x_x
x_y
x_z
y_x
y_y
y_z
z_x
z_y
z_z
x2y2_x2y2
x2y2_xz
x2y2_z2
x2y2_yz
x2y2_xy
xz_x2y2
xz_xz
xz_z2
xz_yz
xz_xy
z2_x2y2
z2_xz
z2_z2
z2_yz
z2_xy
yz_x2y2
yz_xz
yz_z2
yz_yz
yz_xy
xy_x2y2
xy_xz
xy_z2
xy_yz
xy_xy

Functions

int orbitalQN(orb_t o)

gets the orbital quantum number (“l”) of the argument, i.e.

0 for s, 1 for px,py,pz, 2 for all d orbitals.

Return

Returns 0 if the orbital type is invalid.

std::pair<orb_t, orb_t> separatePair(twoElIntegral_t t)

separates an orbital pair into its orbital components, throws InvalidOrbitalPairException if pair not valid

Return

a std::pair with orbital type elements, i.e. for s_x a pair with an orb_t::s and a orb_t::x

Parameters
  • an: orbital pair, i.e. s_x, corresponding to the s and the p_x orbitals

namespace multipole

Enums

enum ChargeDistance

Values:

d0
dp1
dm1
dp2
dm2
dps2
dms2
enum ChargeDistanceSeparation

Values:

d00
d01
d10
d02
d20
d0s2
ds20
p11
m11
p12
p21
m12
m21
p1s2
ps21
m1s2
ms21
p22
m22
p2s2
ps22
m2s2
ms22
ps2s2
ms2s2
enum multipolePair_t

enum listing the possible charge configurations of a multipole.

It is possible i.e. to infer the charge separation D_{sp1} from it. They are separated in monopole (l = 0), dipole (l = 1) and quadrupole (l = 2).

Values:

sp1
pd1
pp2
sd2
dd2
ss0
pp0
dd0
enum multipole_t

Multipole types used in the calculation of the ERI with the multipole expansion approximation.

Confusion might arise by the use of two merged formalisms: the one for just s and p orbitals and the one for s, p and d orbitals.

l: orbital quantum number m: magnetic quantum number \( M00 = M_{0,0} = q^I\) a monopole with l = 0, m = 0 \( M1m1 = M_{1,-1} = \mu_y \) a dipole in y direction with l = 1, m = -1 \( M10 = M_{1,0} = \mu_z \) a dipole in z direction with l = 1, m = 0 \( M11 = M_{1,1} = \mu_x \) a dipole in x direction with l = 1, m = 1 \( Qxx = Q_{x,x} \) a linear quadrupole in x direction with l = 2, m = 0 \( Qyy = Q_{y,y} \) a linear quadrupole in y direction with l = 2, m = 0 \( Qzz = Q_{z,z} \) a linear quadrupole in z direction with l = 2, m = 0 \( M2m2 = M_{2,-2} = Q_{x,y} \) a x,y square quadrupole with l = 2, m = -2 \( M2m1 = M_{2,-1} = Q_{y,z} \) a y,z square quadrupole with l = 2, m = -1 \( M20 = M_{2,0} = -\~{Q}_{x,z} - \frac{1}{2}\~{Q}_{x,y} \) a quadrupole with charges along each axis at \( \sqrt{2} \) distance from the origin with l = 2, m = 0 \( M21 = M_{2,1} = Q_{x,z}\) a x,z square quadrupole with l = 2, m = 1 \( M22 = M_{2,2} = \~{Q}_{x,y} \) a square quadrupole with charges along the x,y axes at \( \sqrt{2} \) distance from the origin with l = 2, m = 2 \( Qzx = \~{Q}_{z,x} = -\~{Q}_{x,z} \) a square quadrupole with charges along the x,z axes at \( \sqrt{2} \) distance from the origin with l = 2, m = 2

Values:

M00
Qxx
Qyy
Qzz
M1m1
M10
M11
M2m2
M2m1
M20
M21
M22
Qzx

Functions

template<>
Utils::AutomaticDifferentiation::DerivativeType<Utils::derivativeType::first> getDerivative<Utils::derivativeType::first>(orbPair_index_t op1, orbPair_index_t op2) const
template<>
Utils::AutomaticDifferentiation::DerivativeType<Utils::derivativeType::second_atomic> getDerivative<Utils::derivativeType::second_atomic>(orbPair_index_t op1, orbPair_index_t op2) const
template<>
Utils::AutomaticDifferentiation::DerivativeType<Utils::derivativeType::second_full> getDerivative<Utils::derivativeType::second_full>(orbPair_index_t op1, orbPair_index_t op2) const
template<>
Utils::AutomaticDifferentiation::Value1DType<Utils::derivOrder::zero> expr<Utils::derivOrder::zero>(double f, double, double invsqrt) const
template<>
Utils::AutomaticDifferentiation::Value1DType<Utils::derivOrder::one> expr<Utils::derivOrder::one>(double f, double dz, double invsqrt) const
template<>
Utils::AutomaticDifferentiation::Value1DType<Utils::derivOrder::two> expr<Utils::derivOrder::two>(double f, double dz, double invsqrt) const
GeneralTypes::rotationOrbitalPair getRotPairType(GeneralTypes::orb_t o1, GeneralTypes::orb_t o2)

Given 2 orbitals, gives the corresponding orbital pair.

Throws InvalidOrbitalPairException() if the orbital types given are invalid. Order matters.

Return

a GeneralTypes::rotationOrbitalPair corresponding to the input orbitals

Parameters
  • o1: first orbital

  • o2: second orbital

int MQuantumNumber(multipole_t m)

Returns the magnetic quantum number m of a multipole, i.e.

-1 for a dipole in y direction, 0 for a dipole in z direction and 1 for a dipole in x direction. Throws InvalidMultipoleException() if the multipole is not valid.

int LQuantumNumber(multipole_t m)

Returns the orbital quantum number l of an orbital, i.e.

0 for s, 1 for p and 2 for d type orbitals. Throws InvalidMultipoleException() if the multipole is not a valid one.

multipolePair_t pairType(int l1, int l2, int l)

Function to infer the charge configuration of a multipole.

Return

throws InvalidQuantumNumbersException() if the quantum number is invalid. Otherwise returns a multipolePair_t.

Parameters
  • l1: the orbital quantum number of the first orbital

  • l2: the orbital quantum number of the second orbital

  • l: the multipole orbital quantum number

class ChargesInMultipoles
#include <ChargesInMultipoles.h>

This class defines the point charges of the different multipole.

class Global2c2eMatrix
#include <Global2c2eMatrix.h>

This class calculates the two-center two-electron integrals in the global coordinate system.

class Local2c2eIntegralCalculator
#include <Local2c2eIntegralCalculator.h>

This class is responsible for the calculation of the 2-center-2-electron integrals in the local coordinate system.

template<Utils::derivOrder O>
class Local2c2eMatrix
#include <Local2c2eMatrix.h>

This class creates the local two-center two-electron matrix for an atom pair.

class MultipoleCharge
#include <MultipoleCharge.h>

This class defines an object containing the position and charge of a point charge.

class MultipoleChargePair
#include <MultipoleChargePair.h>

This class stores the information about the distance between two point charges and about the product of their charges

class MultipoleMultipoleInteraction
#include <MultipoleMultipoleInteraction.h>

This header-only class performs the actual calculation of the multipole-multipole interaction.

First all the charge-charge configurations between two multipoles (MultipoleMultipoleTerm) are inferred and stored in a list, then they are calculated by calling MultipoleMultipoleTerm::calculate(…)

class MultipoleMultipoleInteractionContainer
#include <MultipoleMultipoleInteractionContainer.h>

This class keeps a list of terms of charge-charge-interactions for a pair of multipoles.

All the possible interactions can be stored in a 13x13 matrix, as there are 13 multipole types: 1 monopole, 3 dipoles, 3 linear quadrupoles, 3 square quadrupoles with charges between the axis, 3 square quadrupoles with charges along the axis.

class MultipoleMultipoleTerm
#include <MultipoleMultipoleTerm.h>

This header-only class defines an object for the calculation of an interaction between two charges in a multipole.

The total interaction between two electrons is approximated by a classical multipole expansion. This class defines an object that calculates the interaction between two charges of said multipoles. The charge interaction is calculated within the Klopman approximation to retrieve the correct 1-center, 2-electrons interaction in the limit of vanishing distance between the charges. The template functions allow for the analytical calculation of all the values up to the second derivative of the repulsion energy.

class VuvB
#include <VuvB.h>

This class returns the \(V_{\mu\nu,B}\) terms needed in semi-empirical methods.

class ZeroLocal2c2eIntegrals
#include <zeroLocal2c2eIntegrals.h>

Class that specifies which local two-center two-electron integrals are equal to zero in the semi-empirical approximation.

class ChargeSeparationParameter
#include <ChargeSeparationParameter.h>

Charge separation D of semi-empirical models. It describes the separation between two charges of opposite sign in a multipole.

The calculation of the charge separation is described in Thiel, Voityuk, Theor Chim Acta, 1992, 81, 391. The charge separation are stored ad a static c-array of size 5. The charge separations are ordered as in the nddo::multipole::multipolePair_t enum, i.e. sp1, pd1, pp2, sd2, dd2. ss0, pp0, dd0 are not present as there is no charge separation for them (they are monopoles).

class KlopmanParameter
#include <KlopmanParameter.h>

This class is the container for the Klopman-Ohno parameters used for the evaluation of the multipoles.

The Klopman-Ohno are used in the calculation of the two-center ERIs in the NDDO formalism. \( U\left(\Theta^{\mu\nu}_t, \Theta^{\lambda\sigma}_s \right) = \sum^{C_t}_{c=1}\sum^{C_s}_{d=1} \frac{q_c^Iq_d^J}{\sqrt{|r_c^I - r_d^J|^2 + \left( \theta_c^I(\chi_\mu^I\chi_\nu^I) + \theta_d^J(\chi_\lambda^J\chi_\sigma^J) \right)}} \)

namespace PM6Elements

Functions

unsigned int getQuantumNumberForSOrbital(Utils::ElementType e)
unsigned int getQuantumNumberForPOrbital(Utils::ElementType e)
unsigned int getQuantumNumberForDOrbital(Utils::ElementType e)
unsigned int getNumberOfAOs(Utils::ElementType e, BasisFunctions basisFunctions)
unsigned int getNumberOneCenterTwoElectronIntegrals(Utils::ElementType e, BasisFunctions basisFunctions)
double getCoreCharge(Utils::ElementType elementType)