Namespace Scine::Sparrow::nddo¶
-
namespace
nddo
Enums
-
enum
BasisFunctions
Values:
-
sp
-
spd
-
-
enum
sc_t
Values:
-
F0ss
-
F0pp
-
F0dd
-
F0sp
-
F0sd
-
F0pd
-
F2pp
-
F2dd
-
F2pd
-
F4dd
-
G1sp
-
G1pd
-
G2sd
-
G3pd
-
R1sppd
-
R2sdpp
-
R2sddd
-
Functions
-
template<>
Utils::AutomaticDifferentiation::Value1DType<Utils::derivOrder::zero>integral
<Utils::derivOrder::zero>(double R) const
-
template<>
Utils::AutomaticDifferentiation::Value1DType<Utils::derivOrder::one>integral
<Utils::derivOrder::one>(double R) const
-
template<>
Utils::AutomaticDifferentiation::Value1DType<Utils::derivOrder::two>integral
<Utils::derivOrder::two>(double R) const
-
template<>
Utils::AutomaticDifferentiation::DerivativeType<Utils::derivativeType::first>getDerivative
<Utils::derivativeType::first>() const
-
template<>
Utils::AutomaticDifferentiation::DerivativeType<Utils::derivativeType::second_atomic>getDerivative
<Utils::derivativeType::second_atomic>() const
-
template<>
Utils::AutomaticDifferentiation::DerivativeType<Utils::derivativeType::second_full>getDerivative
<Utils::derivativeType::second_full>() const
-
template<>
Utils::AutomaticDifferentiation::Value1DType<Utils::derivOrder::zero>integral
<Utils::derivOrder::zero>(double R) const
-
template<>
Utils::AutomaticDifferentiation::Value1DType<Utils::derivOrder::one>integral
<Utils::derivOrder::one>(double R) const
-
template<>
Utils::AutomaticDifferentiation::Value1DType<Utils::derivOrder::two>integral
<Utils::derivOrder::two>(double R) const
-
template<>
Utils::AutomaticDifferentiation::DerivativeType<Utils::derivativeType::first>getDerivative
<Utils::derivativeType::first>() const
-
template<>
Utils::AutomaticDifferentiation::DerivativeType<Utils::derivativeType::second_atomic>getDerivative
<Utils::derivativeType::second_atomic>() const
-
template<>
Utils::AutomaticDifferentiation::DerivativeType<Utils::derivativeType::second_full>getDerivative
<Utils::derivativeType::second_full>() const
-
template<>
Utils::AutomaticDifferentiation::Value1DType<Utils::derivOrder::zero>integral
<Utils::derivOrder::zero>(double R) const
-
template<>
Utils::AutomaticDifferentiation::Value1DType<Utils::derivOrder::one>integral
<Utils::derivOrder::one>(double R) const
-
template<>
Utils::AutomaticDifferentiation::Value1DType<Utils::derivOrder::two>integral
<Utils::derivOrder::two>(double R) const
-
template<>
Utils::AutomaticDifferentiation::DerivativeType<Utils::derivativeType::first>getDerivative
<Utils::derivativeType::first>() const
-
template<>
Utils::AutomaticDifferentiation::DerivativeType<Utils::derivativeType::second_atomic>getDerivative
<Utils::derivativeType::second_atomic>() const
-
template<>
Utils::AutomaticDifferentiation::DerivativeType<Utils::derivativeType::second_full>getDerivative
<Utils::derivativeType::second_full>() const
-
class
AM1PairwiseRepulsion
- #include <AM1PairwiseRepulsion.h>
This class calculates the core-core repulsion between two atoms.
-
class
AM1RepulsionEnergy
: public RepulsionCalculator - #include <AM1RepulsionEnergy.h>
This class sums up the core-core repulsion energies and the corresponding derivatives with respect to the nuclear cartesian coordinate between all pairs of cores.
It inherits from Utils::RepulsionCalculator in order for it to work with the LCAO/SCFMethod polymorphic system.
-
class
MNDOPairwiseRepulsion
- #include <MNDOPairwiseRepulsion.h>
This class calculates the core-core repulsion between two atoms.
-
class
MNDORepulsionEnergy
: public RepulsionCalculator - #include <MNDORepulsionEnergy.h>
This class sums up the core-core repulsion energies and the corresponding derivatives with respect to the nuclear cartesian coordinate between all pairs of cores.
It inherits from Utils::RepulsionCalculator in order for it to work with the LCAO/SCFMethod polymorphic system.
-
class
PM6PairwiseRepulsion
- #include <PM6PairwiseRepulsion.h>
This class calculates the core-core repulsion between two atoms.
-
class
PM6RepulsionEnergy
: public RepulsionCalculator - #include <PM6RepulsionEnergy.h>
This class sums up the core-core repulsion energies and the corresponding derivatives with respect to the nuclear cartesian coordinate between all pairs of cores.
It inherits from Utils::RepulsionCalculator in order for it to work with the LCAO/SCFMethod polymorphic system.
-
template<Utils::derivOrder
O
>
classAtomPairOverlap
- #include <AtomPairOverlap.h>
This class computes a block of the overlap matrix for two atoms.
The actual calculation is done by the GTOOverlapMatrixBlock class, here the blocks that need calculation are identified and scheduled for calculation.
-
template<Utils::derivOrder
O
>
classGTOOverlapMatrixBlock
- #include <GTOOverlapMatrixBlock.h>
This class calculates the overlap matrix block and its derivatives for two groups of orbitals on different atoms, each group of which shares the same angular momentum.
F.i. s-s, s-p, p-d, d-d, … according to the Obara-Saika method.
-
class
OneCenterIntegralContainer
- #include <oneCenterIntegralContainer.h>
This class contains smart pointers to one-center two-electron matrices for the atoms in the AtomCollection. Since they are equal for an element type, they are calculated only once per element type.
-
class
OneCenterSlaterIntegral
- #include <oneCenterSlaterIntegral.h>
Calculation of the one-centre integrals (related to Slater-Condon parameters) according to Kumar, Mishra, J. Phys., 1987, 29, 385-390. The calculation is not optimized for performance as it does not need to be fast. NB: this returns U^l(a,b,c,d) = R^k(a,c,b,d) as defined in other papers.
-
class
OneCenterTwoElectronCalculator
- #include <OneCenterTwoElectronCalculator.h>
This class implements formulas for the calculation of the one-center two-electron integrals from 14 Slater-Condon parameters and three radial parameters. The main reference is Pelikan, P; Turi Nagy L., Chemical Papers, 1974, 28, 594-598. The indexes used here are the same as in the reference minus one. In formula 17 of the reference, sqrt(12) is used instead of 12. In formula 54, R1sppd would be correct instead of R1spdd In formulas 51, 53, 56, 57, R2sppd is R2sdpp
-
class
OneCenterTwoElectronIntegralExpression
- #include <OneCenterTwoElectronIntegralExpression.h>
This class allows the creation of instances containing, so to say, the analytical expression for the calculation of a one-center two-electron integral based on Slater-Type parameters.
-
class
OneCenterTwoElectronIntegrals
- #include <oneCenterTwoElectronIntegrals.h>
This class calculates all the unique one-center two-electron integrals for a given element.
-
class
OverlapMatrix
: public OverlapCalculator - #include <OverlapMatrix.h>
This class computes the whole overlap matrix and returns it in lower diagonal form.
The basis function overlap, as well as its first and second order derivatives with respect to the nuclear cartesian coordinates is calculated. It inherits from OverlapCalculator in order to make this class compatible with its polymorphic useage.
-
class
TwoCenterIntegralContainer
- #include <TwoCenterIntegralContainer.h>
This class contains smart pointers to two-center two-electron matrices for different atoms.
This class stores for each atom pair a shared pointer to a Global2c2eMatrix, containing the ERIs between the two centers.
-
class
TwoElectronIntegralIndexes
- #include <TwoElectronIntegralIndexes.h>
This class initializes and stores as a static array the indices of the charge distributions on one center playing a role in the multipole expansion.
The generation of the indices array happens only one time being it declared static. The generated charge distributions are located on one single center, as in the NDDO approximation charge distributions centered on two centers are neglected: \( \langle \phi_\mu\phi_\nu | \phi_\\lambda\phi_\sigma \rangle = \vardelta_{IJ}\vardelta_{KL}\langle \chi_\mu^I\chi_\nu^J | \chi_\\lambda^K\chi_\sigma^L\rangle \) In total, 40 possible charge distributions are possible: out of a symmetric 9x9 matrix, the diagonal and the terms that give rise to a charge distribution are retained. In the end 40 indices are stored. 5 charge distributions do not give rise to a multipole:
\( p_x d_{yz} \)
\( p_y d_{xz} \)
\( p_z d_{xy} \)
\( p_z d_{x^2 - y^2} \)
\( p_xy d_{x^2 - y^2} \)
-
class
NDDODensityGuess
: public DensityMatrixGuessCalculator - #include <NDDODensityGuess.h>
Implementation of DensityMatrixGuessCalculator for the NDDO methods.
-
class
NDDOInitializer
: public StructureDependentInitializer - #include <NDDOInitializer.h>
Settings for generic NDDO methods.
Reads the parameters and applies them to the system of interest. Depending on the method, the basis functions used can either be BasisFunction::sp (MNDO, AM1) of BasisFunction::spd (i.e. PM6, AM1*, MNDO/d) and it can have just atomic parameters (i.e. AM1, MNDO) or also diatomic parameters (i.e. PM6)
-
class
OneElectronMatrix
- #include <OneElectronMatrix.h>
This class generates the one-electron matrix H for semi-empirical methods.
-
class
AtomicParameters
- #include <AtomicParameters.h>
Class for the storage of atomic parameters in the semiempirical methods. (only those needed at runtime).
-
class
DiatomicParameters
- #include <DiatomicParameters.h>
Class for the storage of pairwise parameters in the PM6 method. (only those needed at runtime)
Subclassed by Scine::Sparrow::nddo::PM6DiatomicParameters
-
class
ElementPairParameters
- #include <ElementPairParameters.h>
This class holds the all the pointers to the parameters for element pairs.
-
class
ElementParameters
- #include <ElementParameters.h>
This class holds the pointers to the element-specific runtime parameters
-
class
PM6DiatomicParameters
: public Scine::Sparrow::nddo::DiatomicParameters - #include <PM6DiatomicParameters.h>
Class for the storage of pairwise parameters in the PM6 method. (only those needed at runtime)
-
class
RawParameterProcessor
- #include <RawParameterProcessor.h>
This class implements functions for the conversion between raw parameters published for PM6 and parameters useful at runtime.
-
struct
gaussianRepulsionParameter
- #include <RawParameters.h>
Structure to store the atomic information present in the parameter file for PM6.
-
class
RawDiatomicParameters
- #include <RawParameters.h>
Structure to store the diatomic information present in the parameter file for PM6.
-
class
RawParametersContainer
- #include <RawParametersContainer.h>
Class containing the PM6 parameters in a raw form.
-
class
SlaterCondonParameters
- #include <SlaterCondonParameters.h>
This class is the container for the Slater-Condon parameters.
-
class
TwoElectronMatrix
- #include <TwoElectronMatrix.h>
Class to generate the two-electron matrix G for semi-empirical methods. This class is parallelized with OpenMP.
-
namespace
GeneralTypes
Enums
-
enum
orb_t
enum indicating the possible orbitals
orb_t::s A s orbital orb_t::x A p_x orbital orb_t::y A p_y orbital orb_t::z A p_z orbital orb_t::x2y2 A d_{x^2-y^2} orbital orb_t::xz A d_{xz} orbital orb_t::z2 A d_{z^2} orbital orb_t::yz A d_{yz} orbital orb_t::xy A d_{xy} orbital
Values:
-
s
-
x
-
y
-
z
-
x2y2
-
xz
-
z2
-
yz
-
xy
-
-
enum
twoElIntegral_t
enum listing all of the orbital pairs giving rise to a valid charge distribution
Values:
-
s_s
-
s_x
-
x_x
-
s_y
-
x_y
-
y_y
-
s_z
-
x_z
-
y_z
-
z_z
-
s_z2
-
s_xz
-
s_yz
-
s_x2y2
-
s_xy
-
x_z2
-
x_xz
-
x_x2y2
-
x_xy
-
y_z2
-
y_yz
-
y_x2y2
-
y_xy
-
z_z2
-
z_xz
-
z_yz
-
z2_z2
-
z2_xz
-
z2_yz
-
z2_x2y2
-
z2_xy
-
xz_xz
-
xz_yz
-
xz_x2y2
-
xz_xy
-
yz_yz
-
yz_x2y2
-
yz_xy
-
x2y2_x2y2
-
xy_xy
-
-
enum
rotationOrbitalPair
Values:
-
s_s
-
x_x
-
x_y
-
x_z
-
y_x
-
y_y
-
y_z
-
z_x
-
z_y
-
z_z
-
x2y2_x2y2
-
x2y2_xz
-
x2y2_z2
-
x2y2_yz
-
x2y2_xy
-
xz_x2y2
-
xz_xz
-
xz_z2
-
xz_yz
-
xz_xy
-
z2_x2y2
-
z2_xz
-
z2_z2
-
z2_yz
-
z2_xy
-
yz_x2y2
-
yz_xz
-
yz_z2
-
yz_yz
-
yz_xy
-
xy_x2y2
-
xy_xz
-
xy_z2
-
xy_yz
-
xy_xy
-
Functions
-
int
orbitalQN
(orb_t o) gets the orbital quantum number (“l”) of the argument, i.e.
0 for s, 1 for px,py,pz, 2 for all d orbitals.
- Return
Returns 0 if the orbital type is invalid.
-
std::pair<orb_t, orb_t>
separatePair
(twoElIntegral_t t) separates an orbital pair into its orbital components, throws InvalidOrbitalPairException if pair not valid
- Return
a std::pair with orbital type elements, i.e. for s_x a pair with an orb_t::s and a orb_t::x
- Parameters
an
: orbital pair, i.e. s_x, corresponding to the s and the p_x orbitals
-
enum
-
namespace
multipole
Enums
-
enum
ChargeDistance
Values:
-
d0
-
dp1
-
dm1
-
dp2
-
dm2
-
dps2
-
dms2
-
-
enum
ChargeDistanceSeparation
Values:
-
d00
-
d01
-
d10
-
d02
-
d20
-
d0s2
-
ds20
-
p11
-
m11
-
p12
-
p21
-
m12
-
m21
-
p1s2
-
ps21
-
m1s2
-
ms21
-
p22
-
m22
-
p2s2
-
ps22
-
m2s2
-
ms22
-
ps2s2
-
ms2s2
-
-
enum
multipolePair_t
enum listing the possible charge configurations of a multipole.
It is possible i.e. to infer the charge separation D_{sp1} from it. They are separated in monopole (l = 0), dipole (l = 1) and quadrupole (l = 2).
Values:
-
sp1
-
pd1
-
pp2
-
sd2
-
dd2
-
ss0
-
pp0
-
dd0
-
-
enum
multipole_t
Multipole types used in the calculation of the ERI with the multipole expansion approximation.
Confusion might arise by the use of two merged formalisms: the one for just s and p orbitals and the one for s, p and d orbitals.
l: orbital quantum number m: magnetic quantum number \( M00 = M_{0,0} = q^I\) a monopole with l = 0, m = 0 \( M1m1 = M_{1,-1} = \mu_y \) a dipole in y direction with l = 1, m = -1 \( M10 = M_{1,0} = \mu_z \) a dipole in z direction with l = 1, m = 0 \( M11 = M_{1,1} = \mu_x \) a dipole in x direction with l = 1, m = 1 \( Qxx = Q_{x,x} \) a linear quadrupole in x direction with l = 2, m = 0 \( Qyy = Q_{y,y} \) a linear quadrupole in y direction with l = 2, m = 0 \( Qzz = Q_{z,z} \) a linear quadrupole in z direction with l = 2, m = 0 \( M2m2 = M_{2,-2} = Q_{x,y} \) a x,y square quadrupole with l = 2, m = -2 \( M2m1 = M_{2,-1} = Q_{y,z} \) a y,z square quadrupole with l = 2, m = -1 \( M20 = M_{2,0} = -\~{Q}_{x,z} - \frac{1}{2}\~{Q}_{x,y} \) a quadrupole with charges along each axis at \( \sqrt{2} \) distance from the origin with l = 2, m = 0 \( M21 = M_{2,1} = Q_{x,z}\) a x,z square quadrupole with l = 2, m = 1 \( M22 = M_{2,2} = \~{Q}_{x,y} \) a square quadrupole with charges along the x,y axes at \( \sqrt{2} \) distance from the origin with l = 2, m = 2 \( Qzx = \~{Q}_{z,x} = -\~{Q}_{x,z} \) a square quadrupole with charges along the x,z axes at \( \sqrt{2} \) distance from the origin with l = 2, m = 2
Values:
-
M00
-
Qxx
-
Qyy
-
Qzz
-
M1m1
-
M10
-
M11
-
M2m2
-
M2m1
-
M20
-
M21
-
M22
-
Qzx
-
Functions
-
template<>
Utils::AutomaticDifferentiation::DerivativeType<Utils::derivativeType::first>getDerivative
<Utils::derivativeType::first>(orbPair_index_t op1, orbPair_index_t op2) const
-
template<>
Utils::AutomaticDifferentiation::DerivativeType<Utils::derivativeType::second_atomic>getDerivative
<Utils::derivativeType::second_atomic>(orbPair_index_t op1, orbPair_index_t op2) const
-
template<>
Utils::AutomaticDifferentiation::DerivativeType<Utils::derivativeType::second_full>getDerivative
<Utils::derivativeType::second_full>(orbPair_index_t op1, orbPair_index_t op2) const
-
template<>
Utils::AutomaticDifferentiation::Value1DType<Utils::derivOrder::zero>expr
<Utils::derivOrder::zero>(double f, double, double invsqrt) const
-
template<>
Utils::AutomaticDifferentiation::Value1DType<Utils::derivOrder::one>expr
<Utils::derivOrder::one>(double f, double dz, double invsqrt) const
-
template<>
Utils::AutomaticDifferentiation::Value1DType<Utils::derivOrder::two>expr
<Utils::derivOrder::two>(double f, double dz, double invsqrt) const
-
GeneralTypes::rotationOrbitalPair
getRotPairType
(GeneralTypes::orb_t o1, GeneralTypes::orb_t o2) Given 2 orbitals, gives the corresponding orbital pair.
Throws InvalidOrbitalPairException() if the orbital types given are invalid. Order matters.
- Return
a GeneralTypes::rotationOrbitalPair corresponding to the input orbitals
- Parameters
o1
: first orbitalo2
: second orbital
-
int
MQuantumNumber
(multipole_t m) Returns the magnetic quantum number m of a multipole, i.e.
-1 for a dipole in y direction, 0 for a dipole in z direction and 1 for a dipole in x direction. Throws InvalidMultipoleException() if the multipole is not valid.
-
int
LQuantumNumber
(multipole_t m) Returns the orbital quantum number l of an orbital, i.e.
0 for s, 1 for p and 2 for d type orbitals. Throws InvalidMultipoleException() if the multipole is not a valid one.
-
multipolePair_t
pairType
(int l1, int l2, int l) Function to infer the charge configuration of a multipole.
- Return
throws InvalidQuantumNumbersException() if the quantum number is invalid. Otherwise returns a multipolePair_t.
- Parameters
l1
: the orbital quantum number of the first orbitall2
: the orbital quantum number of the second orbitall
: the multipole orbital quantum number
-
class
ChargesInMultipoles
- #include <ChargesInMultipoles.h>
This class defines the point charges of the different multipole.
-
class
Global2c2eMatrix
- #include <Global2c2eMatrix.h>
This class calculates the two-center two-electron integrals in the global coordinate system.
-
class
Local2c2eIntegralCalculator
- #include <Local2c2eIntegralCalculator.h>
This class is responsible for the calculation of the 2-center-2-electron integrals in the local coordinate system.
-
template<Utils::derivOrder
O
>
classLocal2c2eMatrix
- #include <Local2c2eMatrix.h>
This class creates the local two-center two-electron matrix for an atom pair.
-
class
MultipoleCharge
- #include <MultipoleCharge.h>
This class defines an object containing the position and charge of a point charge.
-
class
MultipoleChargePair
- #include <MultipoleChargePair.h>
This class stores the information about the distance between two point charges and about the product of their charges
-
class
MultipoleMultipoleInteraction
- #include <MultipoleMultipoleInteraction.h>
This header-only class performs the actual calculation of the multipole-multipole interaction.
First all the charge-charge configurations between two multipoles (MultipoleMultipoleTerm) are inferred and stored in a list, then they are calculated by calling MultipoleMultipoleTerm::calculate(…)
-
class
MultipoleMultipoleInteractionContainer
- #include <MultipoleMultipoleInteractionContainer.h>
This class keeps a list of terms of charge-charge-interactions for a pair of multipoles.
All the possible interactions can be stored in a 13x13 matrix, as there are 13 multipole types: 1 monopole, 3 dipoles, 3 linear quadrupoles, 3 square quadrupoles with charges between the axis, 3 square quadrupoles with charges along the axis.
-
class
MultipoleMultipoleTerm
- #include <MultipoleMultipoleTerm.h>
This header-only class defines an object for the calculation of an interaction between two charges in a multipole.
The total interaction between two electrons is approximated by a classical multipole expansion. This class defines an object that calculates the interaction between two charges of said multipoles. The charge interaction is calculated within the Klopman approximation to retrieve the correct 1-center, 2-electrons interaction in the limit of vanishing distance between the charges. The template functions allow for the analytical calculation of all the values up to the second derivative of the repulsion energy.
-
class
VuvB
- #include <VuvB.h>
This class returns the \(V_{\mu\nu,B}\) terms needed in semi-empirical methods.
-
class
ZeroLocal2c2eIntegrals
- #include <zeroLocal2c2eIntegrals.h>
Class that specifies which local two-center two-electron integrals are equal to zero in the semi-empirical approximation.
-
class
ChargeSeparationParameter
- #include <ChargeSeparationParameter.h>
Charge separation D of semi-empirical models. It describes the separation between two charges of opposite sign in a multipole.
The calculation of the charge separation is described in Thiel, Voityuk, Theor Chim Acta, 1992, 81, 391. The charge separation are stored ad a static c-array of size 5. The charge separations are ordered as in the nddo::multipole::multipolePair_t enum, i.e. sp1, pd1, pp2, sd2, dd2. ss0, pp0, dd0 are not present as there is no charge separation for them (they are monopoles).
-
class
KlopmanParameter
- #include <KlopmanParameter.h>
This class is the container for the Klopman-Ohno parameters used for the evaluation of the multipoles.
The Klopman-Ohno are used in the calculation of the two-center ERIs in the NDDO formalism. \( U\left(\Theta^{\mu\nu}_t, \Theta^{\lambda\sigma}_s \right) = \sum^{C_t}_{c=1}\sum^{C_s}_{d=1} \frac{q_c^Iq_d^J}{\sqrt{|r_c^I - r_d^J|^2 + \left( \theta_c^I(\chi_\mu^I\chi_\nu^I) + \theta_d^J(\chi_\lambda^J\chi_\sigma^J) \right)}} \)
-
enum
-
namespace
PM6Elements
Functions
-
unsigned int
getQuantumNumberForSOrbital
(Utils::ElementType e)
-
unsigned int
getQuantumNumberForPOrbital
(Utils::ElementType e)
-
unsigned int
getQuantumNumberForDOrbital
(Utils::ElementType e)
-
unsigned int
getNumberOfAOs
(Utils::ElementType e, BasisFunctions basisFunctions)
-
unsigned int
getNumberOneCenterTwoElectronIntegrals
(Utils::ElementType e, BasisFunctions basisFunctions)
-
double
getCoreCharge
(Utils::ElementType elementType)
-
unsigned int
-
enum